

Asie, Bac Ge., 7 Juin 2021, sujet n°1

Le candidat traite 4 exercices : les exercices 1, 2 et 3 communs à tous et un seul des deux exercices A ou B.

Exercice 1 [COMMUN](5 points)

En 2020, une influenceuse sur les réseaux sociaux compte 1 000 abonnés à son profil. On modélise le nombre d'abonnés ainsi : chaque année, elle perd 10 % de ses abonnés auxquels s'ajoutent 250 nouveaux abonnés. Pour tout entier naturel n, on note u_n le nombre d'abonnés à son profil en l'année (2020 + n), suivant cette modélisation. Ainsi $u_0 = 1\,000$.

- 1. Calculer u_1 .
- 2. Justifier que pour tout entier naturel n_n , $u_{n+1} = 0.9u_n + 250$.
- 3. La fonction Python nommée « suite » est définie ci-dessous. Dans le contexte de l'exercice, interpréter la valeur renvoyée par suite (10).

```
</>
Code Python

def suite(n) :
    u = 1000
    for i in range(n) :
        u = 0,9*u + 250
    return u
```

- 4. (a) Montrer, à l'aide d'un raisonnement par récurrence, que pour tout entier naturel n, $u_n \le 2500$.
 - (b) Démontrer que la suite (u_n) est croissante.
 - (c) Déduire des questions précédentes que la suite (u_n) est convergente.
- 5. Soit (v_n) la suite définie par $v_n = u_n 2500$ pour tout entier naturel n.
 - (a) Montrer que la suite (v_n) est une suite géométrique de raison 0,9 et de terme initial $v_0 = -1500$.
 - (b) Pour tout entier naturel n, exprimer v_n en fonction de n et montrer que :

$$u_n = -1500 \times 0.9^n + 2500.$$

- (c) Déterminer la limite de la suite (u_n) et interpréter dans le contexte de l'exercice.
- 6. Écrire un programme qui permet de déterminer en quelle année le nombre d'abonnés dépassera 2 200.

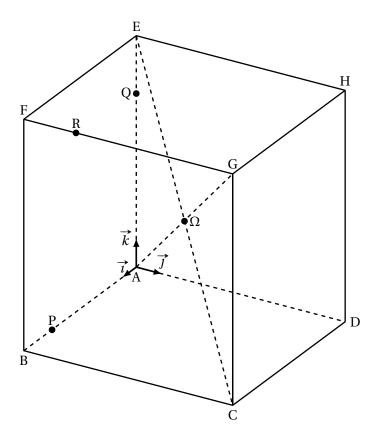
Déterminer cette année.

Exercice 2 [COMMUN](5 points)

On considère un cube ABCDEFGH d'arête 8 cm et de centre Ω .

Les points P, Q et R sont définis par $\overrightarrow{AP} = \frac{3}{4}\overrightarrow{AB}$; $\overrightarrow{AQ} = \frac{3}{4}\overrightarrow{AE}$ et $\overrightarrow{FR} = \frac{1}{4}\overrightarrow{FG}$.

On se place dans le repère orthonormé $(A; \vec{\imath}, \vec{\jmath}, \vec{k})$ avec : $\vec{\imath} = \frac{1}{8} \overrightarrow{AB}; \vec{\jmath} = \frac{1}{8} \overrightarrow{AD}$ et $\vec{k} = \frac{1}{8} \overrightarrow{AE}$.



Partie I

- 1. Dans ce repère, on admet que les coordonnées du point R sont (8;2;8). Donner les coordonnées des points P et Q.
- 2. Montrer que le vecteur $\vec{n}(1;-5;1)$ est un vecteur normal au plan (PQR).
- 3. Justifier qu'une équation cartésienne du plan (PQR) est x 5y + z 6 = 0.

Partie II

On note L le projeté orthogonal du point Ω sur le plan (PQR).

- 1. Justifier que les coordonnées du point Ω sont (4;4;4).
- 2. Donner une représentation paramétrique de la droite d perpendiculaire au plan (PQR) et passant par Ω .
- 3. Montrer que les coordonnées du point L sont $\left(\frac{14}{3}; \frac{2}{3}; \frac{14}{3}\right)$
- 4. Calculer la distance du point Ω au plan (PQR).

Exercice 3 [COMMUN](5 points)

Un sac contient les huit lettres suivantes : A B C D E F G H (2 voyelles et 6 consonnes).

Un jeu consiste à tirer simultanément au hasard deux lettres dans ce sac.

On gagne si le tirage est constitué d'une voyelle et d'une consonne.

- 1. Un joueur extrait simultanément deux lettres du sac.
 - (a) Déterminer le nombre de tirages possibles.
 - (b) Déterminer la probabilité que le joueur gagne à ce jeu.

Les questions 2. et 3. de cet exercice sont indépendantes.

Pour la suite de l'exercice, on admet que la probabilité que le joueur gagne est égale à $\frac{3}{7}$.

- 2. Pour jouer, le joueur doit payer *k* euros, *k* désignant un entier naturel non nul.
 - Si le joueur gagne, il remporte la somme de 10 euros, sinon il ne remporte rien.

On note G la variable aléatoire égale au gain algébrique d'un joueur (c'est-à-dire la somme remportée à laquelle on soustrait la somme payée).

- (a) Déterminer la loi de probabilité de G.
- (b) Quelle doit être la valeur maximale de la somme payée au départ pour que le jeu reste favorable au joueur?
- 3. Dix joueurs font chacun une partie. Les lettres tirées sont remises dans le sac après chaque partie. On note X la variable aléatoire égale au nombre de joueurs gagnants.
 - (a) Justifier que X suit une loi binomiale et donner ses paramètres.
 - (b) Calculer la probabilité, arrondie à 10^{-3} , qu'il y ait exactement quatre joueurs gagnants.
 - (c) Calculer $P(X \ge 5)$ en arrondissant à 10^{-3} . Donner une interprétation du résultat obtenu.
 - (d) Déterminer le plus petit entier naturel n tel que $P(X \le n) \ge 0.9$.

Exercice [AU CHOIX](5 points)

Le candidat doit traiter **un seul des deux exercices** A ou B.

Il indique sur sa copie l'exercice choisi : exercice A ou exercice B.

Pour éclairer son choix, les principaux domaines abordés par chaque exercice sont indiqués dans un encadré.

Exercice A (5 points)

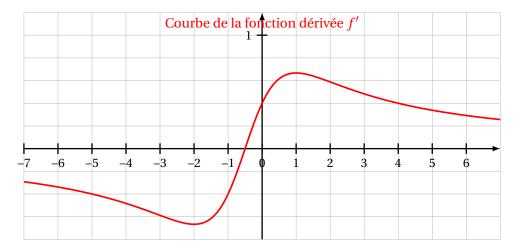
Principaux domaines abordés:

- Convexité
- Fonction In

Partie I: lectures graphiques

f désigne une fonction définie et dérivable sur \mathbb{R} .

On donne ci-dessous la courbe représentative de la fonction dérivée f'.



Avec la précision permise par le graphique, répondre aux questions suivantes

- 1. Déterminer le coefficient directeur de la tangente à la courbe de la fonction f en O.
- 2. (a) Donner les variations de la fonction dérivée f'.
 - (b) En déduire un intervalle sur lequel f est convexe.

Partie II: étude de fonction

La fonction f est définie sur \mathbb{R} par

$$f(x) = \ln\left(x^2 + x + \frac{5}{2}\right).$$

- 1. Calculer les limites de la fonction f en $+\infty$ et en $-\infty$.
- 2. Déterminer une expression f'(x) de la fonction dérivée de f pour tout $x \in \mathbb{R}$.
- 3. En déduire le tableau des variations de f. On veillera à placer les limites dans ce tableau.
- 4. (a) Justifier que l'équation f(x) = 2 a une unique solution α dans l'intervalle $\left[-\frac{1}{2}; +\infty\right[$.
 - (b) Donner une valeur approchée de α à 10^{-1} près.

5. La fonction f' est dérivable sur \mathbb{R} . On admet que, pour tout $x \in \mathbb{R}$, $f''(x) = \frac{-2x^2 - 2x + 4}{\left(x^2 + x + \frac{5}{2}\right)^2}$. Déterminer le nombre de points d'inflavion de la sourche x = x.

Déterminer le nombre de points d'inflexion de la courbe représentative de f.

Principaux domaines abordés:

- Étude de fonction, fonction exponentielle
- Équations différentielles

Partie I

Considérons l'équation différentielle

$$v' = -0.4 v + 0.4$$

où y désigne une fonction de la variable t, définie et dérivable sur $[0; +\infty[$.

- 1. (a) Déterminer une solution particulière constante de cette équation différentielle.
 - (b) En déduire l'ensemble des solutions de cette équation différentielle.
 - (c) Déterminer la fonction g, solution de cette équation différentielle, qui vérifie g(0) = 10.

Partie II

Soit p la fonction définie et dérivable sur l'intervalle $[0; +\infty[$ par

$$p(t) = \frac{1}{g(t)} = \frac{1}{1 + 9e^{-0.4t}}.$$

- 1. Déterminer la limite de p en $+\infty$.
- 2. Montrer que $p'(t) = \frac{3.6e^{-0.4t}}{(1+9e^{-0.4t})^2}$ pour tout $t \in [0; +\infty[$.
- 3. (a) Montrer que l'équation $p(t) = \frac{1}{2}$ admet une unique solution α sur $[0; +\infty[$.
 - (b) Déterminer une valeur approchée de α à 10^{-1} près à l'aide d'une calculatrice.

Partie III

1. p désigne la fonction de la partie II.

Vérifier que p est solution de l'équation différentielle y' = 0.4y(1-y) avec la condition initiale $y(0) = \frac{1}{10}$ où y désigne une fonction définie et dérivable sur $[0; +\infty[$.

2. Dans un pays en voie de développement, en l'année 2020, 10 % des écoles ont accès à internet.

Une politique volontariste d'équipement est mise en œuvre et on s'intéresse à l'évolution de la proportion des écoles ayant accès à internet.

On note t le temps écoulé, exprimé en année, depuis l'année 2020.

La proportion des écoles ayant accès à internet à l'instant t est modélisée par p(t).

Interpréter dans ce contexte la limite de la question II.1. puis la valeur approchée de α de la question II.3.(b) ainsi que la valeur p(0).